gluonts.evaluation.metrics 模块#

gluonts.evaluation.metrics.abs_error(target: numpy.ndarray, forecast: numpy.ndarray) float[source]#

绝对误差。

\[abs\_error = sum(|Y - \hat{Y}|)\]
gluonts.evaluation.metrics.abs_target_mean(target) float[source]#

绝对目标均值。

\[abs\_target\_mean = mean(|Y|)\]
gluonts.evaluation.metrics.abs_target_sum(target) float[source]#

绝对目标总和。

\[abs\_target\_sum = sum(|Y|)\]
gluonts.evaluation.metrics.calculate_seasonal_error(past_data: numpy.ndarray, freq: Optional[str] = None, seasonality: Optional[int] = None)[source]#
\[seasonal\_error = mean(|Y[t] - Y[t-m]|)\]

其中 m 是季节性频率。更多详情请参阅 [HA21]

gluonts.evaluation.metrics.coverage(target: numpy.ndarray, forecast: numpy.ndarray) float[source]#

覆盖率。

\[coverage = mean(Y <= \hat{Y})\]
gluonts.evaluation.metrics.mape(target: numpy.ndarray, forecast: numpy.ndarray) float[source]#
\[mape = mean(|Y - \hat{Y}| / |Y|))\]

更多详情请参阅 [HA21]

gluonts.evaluation.metrics.mase(target: numpy.ndarray, forecast: numpy.ndarray, seasonal_error: float) float[source]#
\[mase = mean(|Y - \hat{Y}|) / seasonal\_error\]

更多详情请参阅 [HA21]

gluonts.evaluation.metrics.mse(target: numpy.ndarray, forecast: numpy.ndarray) float[source]#
\[mse = mean((Y - \hat{Y})^2)\]

更多详情请参阅 [HA21]

gluonts.evaluation.metrics.msis(target: numpy.ndarray, lower_quantile: numpy.ndarray, upper_quantile: numpy.ndarray, seasonal_error: float, alpha: float) float[source]#
\[msis = mean(U - L + 2/alpha * (L-Y) * I[Y<L] + 2/alpha * (Y-U) * I[Y>U]) / seasonal\_error\]

更多详情请参阅 [SSA20]

gluonts.evaluation.metrics.num_masked_values(target) float[source]#

统计目标中被掩码值的数量。

gluonts.evaluation.metrics.quantile_loss(target: numpy.ndarray, forecast: numpy.ndarray, q: float) float[source]#

分位数损失。

\[quantile\_loss = 2 * sum(|(Y - \hat{Y}) * (Y <= \hat{Y}) - q|)\]
gluonts.evaluation.metrics.smape(target: numpy.ndarray, forecast: numpy.ndarray) float[source]#
\[smape = 2 * mean(|Y - \hat{Y}| / (|Y| + |\hat{Y}|))\]

更多详情请参阅 [HA21]