gluonts.zebras.schema 模块#
- class gluonts.zebras.schema.Array(*, required: bool = True, internal: bool = False, default: typing.Any = None, preprocess: typing.Optional[typing.Callable] = None, ndim: typing.Optional[int] = None, shape: typing.Optional[tuple] = None, dtype: typing.Type = <class 'numpy.float32'>)[source]#
基类:
gluonts.zebras.schema.Field
- dtype: Type#
- ndim: Optional[int]#
- shape: Optional[tuple]#
- class gluonts.zebras.schema.Field(*, required: bool = True, internal: bool = False, default: Any = None, preprocess: Optional[Callable] = None)[source]#
基类:
pydantic.v1.main.BaseModel
用户提供输入数据的规范。
- default: Any#
- internal: bool#
- preprocess: Optional[Callable]#
- required: bool#
- class gluonts.zebras.schema.Metadata(*, required: bool = False, internal: bool = False, default: Any = None, preprocess: Optional[Callable] = None, type: Any = typing.Any)[source]#
基类:
gluonts.zebras.schema.Field
- required: bool#
- type: Any#
- class gluonts.zebras.schema.Scalar(*, required: bool = True, internal: bool = False, default: Any = None, preprocess: Optional[Callable] = None, type: Type)[source]#
基类:
gluonts.zebras.schema.Field
- type: Type#
- class gluonts.zebras.schema.Schema(fields=None, **kwargs)[source]#
基类:
object
- fields: Dict[str, gluonts.zebras.schema.Field]#
- load_splitframe(data: Dict[str, Any], future_length: int, start: Optional[Union[gluonts.zebras._period.Period, str]] = None, freq: Optional[Union[gluonts.zebras._freq.Freq, str]] = None) gluonts.zebras._split_frame.SplitFrame [source]#
- load_timeframe(data: Dict[str, Any], start: Optional[Union[gluonts.zebras._period.Period, str]] = None, freq: Optional[Union[gluonts.zebras._freq.Freq, str]] = None) gluonts.zebras._time_frame.TimeFrame [source]#
- class gluonts.zebras.schema.TimeSeries(required: bool = True, internal: bool = False, default: typing.Any = None, preprocess: typing.Optional[typing.Callable] = None, ndim: typing.Optional[int] = None, dtype: typing.Type = <class 'numpy.float32'>, tdim: int = -1, past_only: bool = True)[source]#
基类:
gluonts.zebras.schema.Field
用户提供输入数据的规范。
- 参数
ndim – 输入数据期望的维度数量。如果提供,则确保输入数组具有期望的维度数量。
optional – 输入数据期望的维度数量。如果提供,则确保输入数组具有期望的维度数量。
tdim – 将数组标记为时间序列,并指定哪个轴是时间维度。当此值为
None
时,该数组被分类为"static
”。optional – 将数组标记为时间序列,并指定哪个轴是时间维度。当此值为
None
时,该数组被分类为"static
”。dtype (Type) – 数据类型,传递给
numpy.array
。past_only (bool) – 如果值是时间序列,则在加载
zebras.SplitFrame
时,它标记是否只期望过去范围内的数据。对于静态字段,此值将被忽略。required – 当设置为 True 时,该字段必须存在于用户数据中。否则,使用
default
作为备用值。internal – 当设置为 True 时,允许忽略用户提供的数据,并始终使用
default
作为值。default – 当
required
或internal
设置为 True 时使用的默认值。preprocess – 此函数在验证值之前调用。例如,可以将
preprocess = np.atleast_2d
设置为允许将一维数组作为输入,即使ndim = 2
。optional – 此函数在验证值之前调用。例如,可以将
preprocess = np.atleast_2d
设置为允许将一维数组作为输入,即使ndim = 2
。
- dtype: Type#
- ndim: Optional[int]#
- past_only: bool#
- tdim: int#