gluonts.mx.block.encoder module#

class gluonts.mx.block.encoder.HierarchicalCausalConv1DEncoder(dilation_seq: List[int], kernel_size_seq: List[int], channels_seq: List[int], use_residual: bool = False, use_static_feat: bool = False, use_dynamic_feat: bool = False, **kwargs)[源代码]#

继承自: gluonts.mx.block.encoder.Seq2SeqEncoder

将堆叠的扩张卷积定义为编码器。

详情请参阅以下论文: 1. Van Den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A.W. and Kavukcuoglu, K., 2016, September. WaveNet: A generative model for raw audio. In SSW (p. 125).

参数
  • dilation_seq – 堆叠中每个卷积的扩张率。

  • kernel_size_seq – 堆叠中每个卷积的核大小。

  • channels_seq – 堆叠中每个卷积的通道数。

  • use_residual – 切换是否使用残差连接的标志。

  • use_static_feat – 切换是否将 use_static_feat 用作编码器输入的标志

  • use_dynamic_feat – 切换是否将 use_dynamic_feat 用作编码器输入的标志

hybrid_forward(F, target: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol], static_features: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol], dynamic_features: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol]) Tuple[Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol], Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol]][源代码]#
参数
  • F – 在 MXNet 中可引用 Symbol API 或 NDArray API 的模块。

  • target – 目标时间序列,形状 (batch_size, sequence_length, 1)

  • static_features – 静态特征,形状 (batch_size, num_feat_static)

  • dynamic_features – 动态特征,形状 (batch_size, sequence_length, num_feat_dynamic)

返回

  • Tensor – 静态编码,形状 (batch_size, channel_seqs + (1) 如果 use_residual 为真)

  • Tensor – 动态编码,形状 (batch_size, sequence_length, channel_seqs + (1) 如果 use_residual 为真)

class gluonts.mx.block.encoder.MLPEncoder(layer_sizes: List[int], **kwargs)[源代码]#

继承自: gluonts.mx.block.encoder.Seq2SeqEncoder

将多层感知机定义为编码器。

参数
  • layer_sizes – 每层的隐藏单元数量。

  • kwargs

hybrid_forward(F, target: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol], static_features: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol], dynamic_features: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol]) Tuple[Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol], Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol]][源代码]#
参数
  • F – 在 MXNet 中可引用 Symbol API 或 NDArray API 的模块。

  • target – 目标时间序列,形状 (batch_size, sequence_length)

  • static_features – 静态特征,形状 (batch_size, num_feat_static)

  • dynamic_features – 动态特征,形状 (batch_size, sequence_length, num_feat_dynamic)

返回

  • Tensor – 静态编码,形状 (batch_size, num_feat_static)

  • Tensor – 动态编码,形状 (batch_size, sequence_length, num_feat_dynamic)

class gluonts.mx.block.encoder.RNNCovariateEncoder(use_static_feat: bool = True, use_dynamic_feat: bool = True, **kwargs)[源代码]#

继承自: gluonts.mx.block.encoder.RNNEncoder

已弃用类,仅用于兼容性;请改用 RNNEncoder。

class gluonts.mx.block.encoder.RNNEncoder(mode: str, hidden_size: int, num_layers: int, bidirectional: bool, use_static_feat: bool = False, use_dynamic_feat: bool = False, **kwargs)[源代码]#

继承自: gluonts.mx.block.encoder.Seq2SeqEncoder

定义 RNN 编码器,如果需要,它使用协变量和目标作为 RNN 的输入。

参数
  • mode – RNN 的类型。可以是:rnn_relu (带 relu 激活的 RNN)、rnn_tanh (带 tanh 激活的 RNN)、lstm 或 gru。

  • hidden_size – 每层隐藏层的单元数量。

  • num_layers – 隐藏层的数量。

  • bidirectional – 切换是否使用双向 RNN 作为编码器。

  • use_static_feat – 切换是否将 use_static_feat 用作编码器输入的标志

  • use_dynamic_feat – 切换是否将 use_dynamic_feat 用作编码器输入的标志

hybrid_forward(F, target: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol], static_features: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol], dynamic_features: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol]) Tuple[Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol], Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol]][源代码]#
参数
  • F – 在 MXNet 中可引用 Symbol API 或 NDArray API 的模块。

  • target – 目标时间序列,形状 (batch_size, sequence_length, 1)

  • static_features – 静态特征,形状 (batch_size, num_feat_static)

  • dynamic_features – 动态特征,形状 (batch_size, sequence_length, num_feat_dynamic)

返回

  • Tensor – 静态编码,形状 (batch_size, num_feat_static)

  • Tensor – 动态编码,形状 (batch_size, sequence_length, num_feat_dynamic)

class gluonts.mx.block.encoder.Seq2SeqEncoder(prefix=None, params=None)[源代码]#

继承自: mxnet.gluon.block.HybridBlock

编码器的抽象类。

编码器接收一个 target 序列及其对应的协变量,并将其映射到一个静态潜在编码和一个与 target 序列长度相同的动态潜在编码。

hybrid_forward(F, target: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol], static_features: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol], dynamic_features: Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol]) Tuple[Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol], Union[mxnet.ndarray.ndarray.NDArray, mxnet.symbol.symbol.Symbol]][源代码]#
参数
  • F – 在 MXNet 中可引用 Symbol API 或 NDArray API 的模块。

  • target – 目标时间序列,形状 (batch_size, sequence_length)

  • static_features – 静态特征,形状 (batch_size, num_feat_static)

  • dynamic_features – 动态特征,形状 (batch_size, sequence_length, num_feat_dynamic)

返回

  • Tensor – 静态编码,形状 (batch_size, num_feat_static)

  • Tensor – 动态编码,形状 (batch_size, sequence_length, num_feat_dynamic)